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The success of neural networks is often limited by a sparse database of training examples, deficient
neural-network architectures, and nonglobal optimization of the network variables. The convolution of
these three problems has curtailed the application of network models to protein-structure predictions,
where homology modeling or information theory approaches are considered better controlled alterna-
tives. This paper introduces our broad objective of disentangling the three degrading features of neural
networks cited above, beginning with improved designs of network architectures used in the prediction
of protein secondary structure. This work demonstrates that network architecture design considerations
greatly improve generalization and more efficiently extract complex sequence-structure relationships
from the existing database, as compared to arbitrary architectures with the same size input window.

PACS number(s): 87.10.+e¢

I. INTRODUCTION

A solution of the protein folding problem entails the
discovery of the principles by which amino acid se-
quences encode information about, and efficiently find,
their functional native states. A reasonable compromise
of practical significance would be a straight structure-
predictor algorithm, which would map sequences to
structures with high accuracy while sacrificing a deeper
understanding of forces that drive folding and eventually
stabilize protein native states. Several such computation-
al strategies exist, although none has demonstrated
sufficient accuracy, and the reader is referred to several
excellent reviews of the status of protein-structure predic-
tions [1-3]. Statistical methods [4-7] and neural-
network approaches [8--22] are united by their reliance
on a database of known protein structures. It was origi-
nally thought that neural networks might exceed the
predictive capacity of statistical methods that only ex-
ploit “first order” information, since hidden neurons
might extract higher order correlations as well. Howev-
er, neural-network approaches have not improved upon
the best statistical analysis [6,7] or homology modeling
[23] for secondary or tertiary protein-structure predic-
tions. The attraction of neural-network methods is fur-
ther diminished by empiricisms and technical difficulties
needed to implement even a mildly successful prediction
scheme [3].

The purpose of the neural-network models in the area
of a secondary-structure prediction is to map relation-
ships between certain input patterns of amino acids and
the secondary structure of an element in that pattern.
Three factors limit the capabilities of neural networks in
this case (and in general). First, the performance of the
network of an unknown input space is very dependent on
how representative the trained database is. Relative to
the number of proteins that have been sequenced
biochemically (around 40000 in sequence data banks
such as SWISS-PROT and PIR), the number of solved struc-
tures is two orders of magnitude smaller—many of these
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homologous or structurally indistinct. This leads to a
serious problem of under representation of correctly dis-
tributed information in the training examples for the net-
work to learn. Second, the relationship between network
topologies and performance is poorly understood, and
thus network designs can be a hindrance to the practical
predictive capabilities of the network, as well as being
very difficult to interpret when examining final network
weights. Finally, the choice of an optimal network train-
ing method is far from unambiguous: error backpropaga-
tion [24,25] cannot guarantee finding global error mini-
ma, while those that potentially have that capability
[20,26,27] are terribly slow to converge. This problem is
rooted in the complex, multidimensional error landscapes
of the “multiple-layered” networks that are replete with
local minima. The coupling of these three factors is even
more problematic; it is difficult to address one problem
singularity when the others are not completely under-
stood and controlled.

The convolution of these debilitating features is well il-
lustrated in the performance of neural networks used for
a secondary-structure prediction. Rather simple net-
works using backpropagation and a finite input window
predicted a test set with an overall accuracy of 63%,
slightly higher if post-processed by cascading the output
into another network, with positive correlation
coefficients for each structural class [8,10,14]. Holley and
Karplus found that adding more than two hidden units
increased network memorization and Decreased network
generalization. In fact, a network with no hidden units at
all had almost the same prediction accuracy as the op-
timal, two-hidden-unit network [10,14]. Incorporating
precalculated information about the periodicities of a-
helix and B-sheet strands in the input representation for a
one-hidden-layer, finite window size and three-state out-
put network with postprocessing improved overall pre-
diction accuracy (63% to 65%), and significantly im-
proved correlations for helix, without sacrificing sheet or
coil correlation [12].

Kneller, Cohen, and Langridge [12] also tried classify-
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ing their protein database into tertiary structural classes
based on types identified by Levitt and Chothia [28]; for
networks trained over a particular structural class,
significant overall prediction accuracy improvements are
realized. Recent networks which exploit sequence homo-
logies have now gained another 5% in prediction accura-
cy [11]. Together, these network results best display the
need to address the problem of database sparsity and lim-
itations of a finite input window.

To move beyond these pioneering attempts to predict
secondary structure using neural networks will require
projecting out and solving individually the three limita-
tions to successful network application cited above. In
this paper and future work, we consider strategies that
decouple these degrading features of network approaches
to provide for further improvements in network perfor-
mance. Thus far we have considered network architec-
ture design for both helix prediction of real proteins and
tertiary structure for complete sequence-structure data
bases of model chemistries [21,22,29]. This paper is de-
voted to a preliminary exploration of the neural-network
topology problem for secondary-structure prediction for
real protein databases using a finite input window size of
nine amino acids. Section II presents relevant back-
ground material necessary for the subsequent sections.
Our hand-designed network structures presented in Sec.
III are, in effect, constraints, reducing the amount of in-
formation the network has to learn by “hard-wiring”
rules already learned by other means. In Sec. IV we will
show that these topologies positively influence network
prediction and most significantly improve generalization
to new sequence-structure relationships as compared to
previous neural-network models. As summarized in Sec.
V, methods for overcoming database sparsity will be
necessary to realize significant improvements in predic-
tive capacity, but our results suggest that careful atten-
tion to network design will strongly influence predicative
confidence and the avoidance of undesired areas of
configuration space of the network variables.

II. BACKGROUND AND METHODS

Network training. In this study we work exclusively
with feed-forward backpropagation networks [30]. A
typical multilayer network is shown in Fig. 1. Learning
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FIG. 1. A generic feed-forward, multilayer, neural-network
architecture.
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by backpropagation involves minimizing an error func-
tion that goes to zero as the final calculated outputs of
the network match the observed output for all input-

output pattern pairs. The function traditionally used is
(30]

E=22(Oz£j_0cii)2 ’
i

where the summation index i is over all patterns, summa-
tion index j is over all output units, 0O,; is the observed
(i.e., database value) output for output unit j and pattern
i, and O is the calculated (network) output, which is cal-
culated as follows. An input pattern / is fed into input
units, which output the values of the pattern elements.
These values are fed forward through the network; all the
network units calculate their outputs according to

(2.1

Oj=tanh(B4]), 2.2)
where
k

and the summation index over k is over all connected
downstream neurons. fB is a steepness factor of the hy-
perbolic tangent function (8=1.5 in this study), wy is
the weight connecting the downstream neuron k to the
upstream neuron j, and b; is the threshold bias associated
with neuron j. In this paper, outputs are represented by
real values from —1.0 to 1.0, and the nonlinear response
function matching this output range is a hyperbolic
tangent, unless otherwise noted.

Minimizing the error involves taking steps down the
error gradient with respect to the free variables, the
weights and biases:
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where y is generally some fixed step size (set at 0.001 in
this paper). While the above shows the error as a sum
over all patterns, we follow the common alternative
method that computes and steps down a gradient for
each pattern. By choosing the patterns randomly, we can
step through weight space stochastically and search
through a wider portion of the error surface [30]. The
above process of calculating and stepping down the error

- gradient is repeated for each input-output pattern pair in

the training set until a stopping condition is met (we con-
sider the training complete after 500 passes through all
network patterns). During training, we also randomly re-

_ ject input-output patterns of a certain secondary struc-

ture class with a probability related to the class’s repre-
sentation in the training database. This heuristically at-
tempts to address underrepresentation of helix and sheet
relative to coil in the database, and we note that similar
methods have been previously employed with success
[20].

Network performance. After a network is trained,
there are several methods of evaluating its performance.




A good review of these is found in Ref. [20] and they are
briefly explained in this section. The simplest one is the
fraction correct,

= (2.6)

where P; is the number of correct predictions of structure
s, and N, is the number of observed residues of structure
s. The total correct Q. is just the sum of all correctly
predicted residues normalized by the total number of ob-
served residues. By focusing on criteria like Q,,, we get
networks that potentially predict more of overrepresent-
ed output categories (e.g., coil) at the expense of the other
categories. Perhaps the most meaningful measurement of
accuracy is the Matthews correlation coefficient:
M,= (PR —0i0) , @7
V(R4 U, )R, +0,)(P,+U,)P,+0,)]

where Ry is the number of residues that are not in struc-
ture S that are correctly rejected, U, is the number of
residues underpredicted, and O, is the number of residues
overpredicted. This number accounts for overpredictions
and underpredictions of the state in question; it is equal
to 1.0 when the network predictions are perfectly corre-
lated with the observed output, O if random, and —1.0 if
there is anticorrelation. We assign a quality factor (QF)
defined as the sum of the Matthews correlation
coefficients as a one-value measure of a network’s perfor-
mance. By doing this, we place the emphasis on the net-
work that best learns all three structural categories most
accurately.

Secondary structure classification. The majority of
neural-network secondary-structure prediction research
has worked with a three-state structure classification—
helix, sheet, and coil. There are many different criteria
for assigning secondary structure; the dictionary of
secondary structures of proteins (DSSP) method
developed by Kabsch and Sander [31] is in widespread
use, making comparisons between different prediction
methods more meaningful. Various combinations of hy-
drogen bonds, clearly defined by a polar interaction ener-
gy cutoff, build simple elementary structures, such as
turns (an N turn at residue i is defined as a bond between
i and i +N) and bridges (between residues i and j) that
are parallel (bonds between [i —1,j] and [j,i +1] or be-
tween [j —1,i] and [i,j +1]) and antiparallel (bonds be-
tween [i,j] and [j,i] or between [i—1,j+1] and
[/ —Li+1]). These elementary structures form more
complex structures—i.e., runs of N turns form helices,
and consecutive bridges form ladders that in turn group
to form sheets. The majority of neural-network studies
that predict secondary structure consider residues in
four-turn helices to be ‘‘helix,” while resides in ladders
are classified as “sheet,” and everything else is designated
as “coil.” Our definitions are the same except that we
consider isolated 8 bridges as sheet residues as well. In
addition to the Kabsch-Sanders algorithm, a dictionary
of secondary-structure clarifications for all amino acids
for 62 proteins from 19 different families is published
[32]. This paper uses these 62 portions, 48 grouped into a
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training set and 14 into a testing set as in Ref. [10]. We
note that the DSSP secondary-structure assignments are
not unique, but provide an algorithm which is very
methodical and hierarchical based on hydrogen bonds.
While details of the network design approach presented
here will change with changing secondary-structure as-
signments, the modifications necessary would be straight-
forward to implement.

III. NEURAL-NETWORK DESIGN

Previous work [21,22] has shown that network topolo-
gies can be rationally designed to encode certain con-
straints or information abut the input; in the present
case, we can “hard wire” certain knowledge about
secondary-structure dependence of particular amino
acids. For example, a simple five weight network topolo-
gy can capture the intuitive essence of hydrophobic at-
traction, given the relative hydrophobicities of two par-
ticular amino acids as inputs, the output would represent
an increased likelihood of proximity [22]. Other
knowledges can be encoded in network topologies, much
like the above function that models hydrophobic interac-
tions (hydrophobic central Boolean function, or CBF)
[22]. They come from a combination of physical forces,
database analysis, and definitions imposed by the
secondary-structure assignment algorithm. In the first
category, both hydrophobic and electrostatic effects can
be encoded in a CBF network topology (with different
weights). In the second, statistical analysis of particular
groups of window positions can also inspire network
functions. Finally, constraints are also implied by the
DSSP secondary-structure assignment algorithm. In ad-
dition, input representations can encode relative scales
for helix and sheet propensity and hydrophobicity for all
amino acids. The encoding of these types of information
is described in the remainder of this section; in the fol-
lowing text, hydrophobic residues are abbreviated as H,
neutral residues as O, and hydrophbillic residues as P. Un-
less otherwise noted, (i) refers to the neural window resi-
due.

Input representation. Input representation involves the
conversion of the amino acid or padding residue to net-
work values. In previous neural-network benchmarks
[8,10], each residue is represented by a group of 21 bits
(20 amino acids plus padding residue), where the bit posi-
tion representing the particular amino acid is on (1) while
all others are off (0). The weight from this bit is the only
one modified by the backpropagation step. This repre-
sentation purposely avoids encoding any knowledge of
input-output relationships. In our study, instead of a 21-
bit input representation, each of the input pattern’s ele-
ments is converged to a three-value group (Fig. 2). A
group consists of a helix propensity, a sheet propensity,
and a hydrophobicity; each of those is from a scale nor-
malized to values from —1.0 to 1.0. The hydrophobicity
scale, derived from x-ray structures of globular proteins,
is from Ref. [33]. The other scales were determined by
examining the distribution of amino acid types of resi-
dues of a secondary structure from the training set. For
each amino acid X, we determined its position on the
helix propensity scale by normalizing the number of the
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FIG. 2. The representation of amino acids in a finite input
window. Each amino acid element is converted to a three-value
group representing its relative helix propensity, sheet propensi-
ty, and hydrophobicity in discrete values of —1.0 (least), 0 (neu-
tral), and 1.0 (most). . -

amino acid X in train set helix structures by the number
of the amino acid X in the whole train set. The same was
done for sheet propensity. Based on the just described
procedure, the 20 amino acids are assigned a real number
between —1.0 and 1.0 as a ranking for their relative helix
propensity, sheet propensity, and hydrophobicity. The
continuous ranking of amino acids for each scale is then
divided into three discrete values of —1.0, 0.0, and 1.0.

Helix propensity. As stated above, the DSSP algorithm
requires helices to be a minimum of four residues long.
For the central residue i to be in helix, at least one of four
possible blocks of four contiguous residues, (i —3) to (i),
(i—2)to (i+1), (i—1)to (i +2), or (i) to (i +3), must
be classified as completely helix. Then, if at least one of
the four blocks is composed of residues with high helix
propensity, then we can send a positive signal to the helix
output unit. Each of the four groups has an associated
subfunction [Fig. 3(a)] that sums up the helix propensities
of the residues in the group; the bias of the summing unit
determines how “prohelix” the sum of the residues’ helix
propensities must be before the subfunction fires positive-
ly. Each subfunction feeds into an integrating unit [Fig.
3(b)] with an internal bias determining how many of the
subfunctions must fire positively to send a final, positive
signal. (The integrator bias’s initial value is set so that
the unit replicates logical OR functionality; that is, it out-
puts 1.0 if any of the inputs is 1.0.)

Sheet propensity. A minimal sheet structure is two resi-
dues long. There is a greater likelihood of the central
residue being a sheet when two contiguous residues con-
taining position i consists of amino acids with high
sheet-forming propensity (i —1 and i or { and i +1).
Similar to the helix propensity function, subfunctions are
set up for the two contiguous residues [Fig. 4(a)], which
are then fed into an integrating unit [Fig. 4(b)] whose ini-
tial bias value is set to make the unit mimic logical OR
functionality.

Sheet hydrophobicity. Examination of the database re-
vealed that i and i 4+ 1 pairs in sheet structures were more
often comprised of H-H and H-O pairs, with P-P, P-O,
H-P, and O-O pairs being disfavored. This logic is easily
implemented by a single hidden unit [Fig. 5(a)]. We then
encode two separate functions. If pairs containing the
central window residue (i —1,i) and (i,i +1) are P-P or
P-0, the inhibitory function fires and the excitory func-
tion remains neutral; if both pairs are H-H or H-O, the
excitory function fires and the inhibitory function
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FIG. 3. Helix propensity subfunction. (a) Helix propensity
input field for (i) to (i +3) is connected to an integrating hidden
unit with a bias of —2.5. (b) The combination of (a) for (i —3)
to (i), (i —2) to (i +1), (i —1) to (i +2), or (i) to (i +3) pro-
vides a logical OR function, which fires positively if any subfield
fires differs positively.
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FIG. 4. Sheet propensity subfunction. (a) Sheet propensity
input field for (i) and (i + 1) connected to an integrating hidden
unit with —1.5 bias value. (b) The combination of (a) for
(i —1,i) and (i,i +1) provides a logical OR function, which fires
positively if any subfield fires positively.
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remains neutral. This is accomplished by having two
units with [0,1] output ranges [i.e., we use exp(bx) as a
response function] connected to the pair of subfunctions
as shown in Fig. 5(b). (i,i +2), (i,i +3), and (i,i +4)
pairs in sheet structures all revealed similar hydrophobi-
city correlations, and similar functions were designed for
the related input positions.

Helix hydrophobicity. If the central residue is part of a
helix, the DSSP algorithm demands that either (i —3) to
(i), (i —2)to (i +1),(i —1)to (i +2), or (i) to (i +3) be
all helix. If (i —3) to (i) are helix, then there is a 4-turn
at i—4 and at i{—3, meaning that (i —4,i) and
(i —3,i +1) are bonded. (There are similar results for the
other possibilities.) In this case, we might expect the
pairs i —4 and i, or i —3 and i + 1, to both be hydrophob-
ically similar (H-H or P-P). The CBF function in Fig.
6(a) is the basic building block of the first level of four
subfunctions, each of which is an AND of central Boolean
functions from two consecutive (i,i +4) pairs. The final
level in the function outputs positively if at least one of
the AND’s is true. If all possible cases are hydrophobical-
ly dissimilar, the final function output is inhibitory [Fig.
6(b)]. T

(@)

abbreviated as
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(2,5 and 5,8),

and (1,5 and 5,9)

(b)

FIG. 5. Sheet hydrophobicity subfunction. (a) Hydrophobi-
city input field for (i) and () connected to an integrating hidden
unit with —0.5 as value. (b) Combination of (i —n,i) and
(i,i +n), for n=1, 2, 3, and 4. The overall structure has two
outputs, one excitatory and the other inhibitory. The excitatory
node fires positively and the inhibitory neutrally if the input
pairs are H-H or H-0; the inhibitory node fires positively and
the excitatory neutrally if the input pairs are P-P or P-0. See
text for further explanation.

Analogous to hydrophobicity, (i) and (i +n) pairs in
helix structures contained fewer neutral (O) residues and
more hydrophobic and hydrophillic residues than (i) and
(i +n) pairs in nonhelix residues. The basic logical func-
tion, with two inputs, outputs — 1.0 if either of the inputs
are O, and 1.0 of both inputs are non-O [Fig. 7(a) is
shown]. This subfunction is similar to the sheet hydro-
phobicity case. If both subfunctions are positive, the out-
put is prohelix; if both subfunctions are negative, the out-
put is antihelix or else the output is neutrally O [Fig. 7(b)].
An excitatory integrating unit takes input from the logi-
cal subfunctions at ({ —n) and (i) and (i) and (i +n), and
outputs + 1.0 if all subfunctions indicate non-0; likewise,
an inhibitory integrating unit fires —1.0 if the subfunc-
tions detect O-like residues. Like the sheet, there is both
an excitatory and an inhibitory function for n =2,3 and 4
as well.

Output representation. One typical three-state output
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FIG. 6. Helix hydrophobicity subfunction. (a) Hydrophobi-
city input field for (i) and (j} are connected in the central Boole-
an function (CBF) topology described in [22], where pairs which
are hydrophobically similar (H-H or P-P) fire positively while
hydrophobic-hydrophillic pairs (H-P) are discouraged. (b) Four
logical AND functions are defined (hidden units with —1.0 bias),
which combine consecutive pairs (i —4,i) and (i —3,i+1),
(i —3,i+1) and (i —2,i +2), etc. These are integrated into a
logical OR function that fires positively if any of the logical
AND’s fire positively.
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(b)

FIG. 7. Helix hydrophobicity subfunction. (a) Similar to
sheet hydrophobicity subfunction [Figs. 5(a) and 5(b)].

representation (helix, sheet, coil) is a group of two values,
one helix and one sheet [10]. This is implemented by
comparing the two outputs against a threshold ¢ if either
of the outputs is above ¢, then the structure associated
with the higher output unit is the predicted structure;

otherwise the network output is considered to be coil.

The networks in the paper follow a modified version of
this approach by allowing for two threshold parameters
(one for each unit) searched for in steps of sizes 0.01.

2

IV. NEUTRAL-NETWORK PERFORMANCE

The results presented here are preliminary in nature,
where input representation, window size, and structural
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homologies have not been fully explored and therefore
optimized. In spite of these known limitations in the
present hand-designed networks, they exhibit two very
important benefits when compared to previous network
results. First, the networks that are designed to describe
secondary structure generalize to the test set naturally, so
that the optimized network shows generalization superior
to those with arbitrary topologies. Second, they provide
an improved means of training by essentially serving as
constraints in a constrained optimization of the network
variables. The remainder of this section demonstrates
these two points with several well-defiried controls. Table
I summarizes our results for all networks considered in
this section, and all details of the networks discussed here
(such as specific weights and biases) are available from
the authors.

-Our optimal hand-designed topology is shown in Fig.
8. The functions described in the previous section are
fully connected to a hidden layer, which is then fully con-
nected to the output layer. An additional hidden layer is
fully connected to the input layer and the output layer,
and we refer to them as “context” neurons. Both hidden
layers consist of two hidden units; larger hidden unit lay-
‘efs were not explored. We designed the network (and all

- in this study) with input windows wide enough to contain

our hand-designed topologies. The Kabsch and Sander
helix hydrophobicity function and helix propensity func-
tion (see above) both extend from i —4 to i +4, so a win-
dow width of 9 is used. We justify the use of all the above
described functions by assessing their performances indi-
vidually. The train and test sets were modified so that
the output patterns were changed to two state for a par-
ticularly designed function. For example, the helix func-
tions were evaluated on the train and test databases with
outputs of helix or nonhelix. All functions exhibited pos-
itive correlation coefficients, as expected.

The first set of controls demonstrates the positive
influence of hand-designed elements on network generali-
zation. We compare the optimal structured network
design to simple two- and three-layer networks (Fig. 9)
using the same input and output representation described
in the previous section. Two networks of the form
9__11__2 (B1) (nine element input windows, 11 units in
the first and only hidden layer, and two-state output) and
9_9 9 2 (B2) are considered, both with comparable

TABLEI. Secondary-structure predictive accuracy and Matthews coefficients for hand-designed and

arbitrary topology networks with nine element input window.

N

Train Test
Network Qrot Myix = Mgeer Moy QF Q.. Myiy, My M.y QF
A 0.57 0.36 0.32 031  0.99 0.56  0.32 0.30 0.33 094
A® 0.59 0.37 0.33 029 0.98 0.58  0.34 0.28 0.31  0.93
A2 0.54 0.34 0.29 030 092 0.54  0.31 0.27 033 091
A3 0.56 0.37 033 031 100 056  0.33 0.30 0.33  0.96
A4 0.57 0.40 0.35 031 1.06 054  0.31 0.25 0.32 0.88
B1 0.56 0.40 0.38 026 1.04 047 020 0.20 021  0.61
B2 " 0.56 0.43 0.41 026 1.10 045  0.18 0.19 0.19 0.56
B3 056 040 033 026 099 050 _ 025 025 023 073

“Refers to the Holley-Karplus method of postprocessing final network outputs to collapse all helix runs
less than a length of 4, and sheet runs less than a length of 2, into coil.
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A

FIG. 8. The optimally designed network A. The network is
composed of a combination of the hand-designed pieces de-
scribed in Figs. 3—7 (and graphically described by solid trian-
gles) connected to a two unit trainable hidden layer (denoted A),
which in turn is fully connected to the two unit output; in addi-
tion, there are two units of “context” neurons fully connected to
the input layer and the output layer (denoted c).

numbers of training weights to network A and together
providing some variation on network topology. These
more flexible networks (compared to the large percentage
of fixed variables in the case of network A) perform
significantly better on the training set as judged by the
QF factor but perform much worse on the testing set.
Clearly these topologies are largely memorizing the train-
ing set at the expense of test set generalization. Even for
the 9_ 6__2 (B3), the best of two-layer networks in the
sense that the test set prediction is maximized, network A
shows superior prediction. These results show that net-
work topology is an important factor in optimal network
predictive performance.

The second set of controls shows that network design
partially overcomes the multiple minima problem in the
space of the network variables. For this purpose we con-
sidered a simpler version of network A, consisting of only
the helix propensity [Fig. 3(b)], sheet propensity [Fig.
4(b)], sheet hydrophobicity for (i—1,i,i+1) and
(i —2,i,i +2) [Fig. 5(b)], and helix hydrophobicity [Fig.
6(b) only]; this reduced subfunction space was fed directly
into the intended output unit (helix hydrophobicity into
helix output, etc.). When this simpler topology was start-
ed with completely randomized network variables and
then trained, examination of the weights revealed that the
intended purpose of the network was reproduced, i.e.,

aEas ase acss

A A A

]
[

B1

FIG. 9. Simple two-layer and three-layer networks. The Bl
network fully connects the input layer to eleven hidden units
that are connected to the two-state output (9__11__ 2 network).

B2 referstoa 9 9 9 2 network, and B3 toa 9__6_ 2 net- '

work.

many of the individual topologies generally reproduced
the original hand-designed functionality. For example,
the logic of the helix propensity function was rather neat-
ly preserved. If at least one of the lower subfunction out-
puts was helix promoting, the output of the overall helix
propensity function was positive. A similar reproduction
of functionality occurred, to various degrees, in the sheet
propensity, sheet (i,i +1) hydrophobicity, and sheet
(i,i +2) hydrophobicity topologies. However, the many-
layered topologies, as in the helix hydrophobicity, were
difficult to deconvolute into logical subfunctions, due to
the problems of backpropagation through deeper net-
works. The excessive dilution of error signals toward the
bottom of the network resulted in the helix hydrophobici-
ty topology being the least functionally useful of all the
trained topologies, its output weight an order of magni-
tude smaller than the others. Nonetheless, the remaining
network did settle into a weight configuration mimicking
the functionality of our intended network functions, and
supports our assertion that the actual network topology
is an important factor in controlling the “global” optimi-
zation of network variables.

The final set of controls illustrates how the hand-
designed networks might themselves be optimized and
understood. The key unknowns in our network topolo-
gies were the design of the hidden context units and hid-
den units used to integrate the hand-designed functions.
Intuitively, we expected the hidden units in the latter

-category to combine hand-designed function outputs into

a “known” set of sequence-structure correlations, and the
latter to extract any remaining correlations that the
hand-designed units did not explicitly encode. In actuali-
ty, the hand-designed topologies served as a template for
how sequence-structure mappings are defined, and al-
lowed the more flexible context hidden units to both learn
from, and marginally improve performance of, the hand-
designed pieces alone. In effect, the designed portion of
the network served as constraints in a constrained optim-
ization of the context hidden neurons. This is shown as
follows.

We examined the effect of removing all hand-designed
functions, and their associated hidden layer, from net-
work A (Fig. 10) and recalculated only the output thresh-
olds. The remaining network (A2, Table I) performed
surprisingly well on both train and test sets, better than
topologically equivalent 9 2 2 and optimal 9 6 2

networks. The key difference seemed to be that the hid- ~

den context neurons in network A were trained in tan-
dem with the hand-designed functions (and their associat-
ed hidden layer).

Examination of the context neuron weights from the
trained network A revealed that these hidden units were
primarily using information from the helix and sheet pro-
pensity input fields. Next, a new network, A3 (Table 1),
was defined where the biases and the weights leading into
the hidden units were fixed to their trained values of net-
work A —effectively freezing the units into now learned
“feature detectors.” In addition, the hidden-to-output
weights of the feature detectors were free to change, and
two additional context hidden neurons, fully connected to

input and output, were added (Fig. 10). Examination of
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the new hidden unit weights after training revealed that
the second pair of context units were heavily coupled to
the hydrophobicity field. Overall, this constraint-
optimized network performed slightly better than net-
work A, our optimal hand-designed based network, in
both train and test sets.

We then added the learned hydrophobic correlation
context neurons to those exploiting helix and sheet pro-
pensity, again fixing the lower portions of the new con-
text neurons, and added yet another two hidden neurons
(network A4, Fig. 10, Table I). After training, the added
context neurons showed no favor for any particular
portion(s) of the input representation (magnitudes of all
weights were on the same order), unlike the trained hid-
den neurons in network AS5 and network A. In fact,
while the train set performance increased, the test set
performance decreased significantly, which implies that
the network was no longer extracting generalizations
from the database. The above observations show that the
parallel training of the hand-designed and context por-
tions of the network produce the best network perfor-
mance. Though there may be overlap in the knowledge
learned by the two portions, the mutual error feedback is
important in the training phase. It is interesting to note
that our best hand-designed network A (Fig. 8) and
learned network A3 (Fig. 10) seem to be extracting
higher-order correlations than the simpler B networks;
further testing of this assertion, such as analyzing the
network weights and/or comparison to statistical
methods with the same size input window, is required.

V. CONCLUSIONS

In summary, network topologies were individually
hand designed to incorporate information on helix and
sheet propensities, as well as the influence of individual
amino acid hydrophobicities, to serve as constraints for a
more optimal network solution to secondary-structure

FIG. 10. The hand-designed
network A (see Fig. 8) serves as
a constraint on the optimization
of the context network variables.
A2 corresponds to a network
with just the context neurons (c¢)
trained in the presence of the
hand-designed piece. The con-
text neurons from A2 are frozen
in network A3, and two addi-
tional context neurons are
trained (c2). A4 is a network
with context neurons (c¢) and
(c2) frozen as feature detectors,
and two additional context neu-
rons (c3) are added.

prediction. The primary benefit of the networks present-
ed here is generalization superior to the test set of pro-
teins as compared to randomly chosen topologies. While
overall network performance was less than past neural-
network efforts, we have not yet fully exploited input rep-
resentation or window size in conjunction with our net-
work architectures, which we hope to do in the near fu-
ture.

The problems of database sparsity, deficient network
architectures, and poor network variable optimization
strategies are intimately coupled, and disentangling them
is the primary direction we are pursuing in our neural-
network approaches to protein-structure prediction.
While it is necessary to further improve on network ar-
chitecture (expansion of window size nd optimal input
and output representations), this work clearly demon-
strates that network design can positively impact general-
ization and network variable optimization. There is no
question that database deficiencies remain a daunting
problem for neural-network approaches to protein-
secondary-structure prediction [34], although some com-
pensation is always found by exploiting sequence and/or
structural homologies. However, the results presented
here hint at the possibility that network design might al-
low for more efficient mining of rules about complex
sequence-structure relationships in the existing database,
although further testing of this possibility is required.
Consideration of model chemistries where complete se-
quence and structure databases can be defined might lend
insight into the true severity of this problem and stra-
tegies for overcoming it [22,29]
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